Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
J Med Educ Curric Dev ; 11: 23821205241226818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532855

RESUMO

Objective: To evaluate the effect of the uncertainty training on improvement of students' diagnostic ability. Methods: Data were collected on 70 fifth-year medical students enrolled in the Case Discussion courses on Obstetrics and Gynecology in the spring of 2020. Of these students, 36 were in the uncertainty training group and 34 in the control group. The effect of training was evaluated by cognitively diagnostic assessment which mapped exam questions to 4 attributes assessing clinical reasoning and basic science knowledge. Results: Uncertainty training was able to improve students' ability to use basic science concepts for inference and problem solving, and the ability to integrate complex clinical information to arrive at a diagnosis. But it could not improve students' ability on the basic recall of foundational concepts and the ability to use basic science concepts in clinical reasoning. Medical students could do well in integrating complex clinical information although they didn't recall basic science knowledge well. Conclusion: Uncertainty training could be used as an effective teaching method in Case Discussion course on Obstetrics and Gynecology. However, students still need to improve their basic knowledge besides the training.

2.
Biochem Genet ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441813

RESUMO

Endometriosis (EMS) is a common gynecological condition with apparent heterogeneity, lack of diagnostic markers, and unclear pathogenesis. A series of bioinformatics methods were employed to explore EMS's pathological mechanisms and potential biomarkers by analyzing the combined datasets of EMS (GSE7305, GSE7307, GSE58198, E-MTAB-694), which included 34 normal, 127 eutopic, and 46 ectopic endometrium samples. Then, wet-laboratory experiments (including Western blot, qRT-PCR, and Immunohistochemistry, Immunofluorescence, CCK-8, EdU, Wound healing, Transwell, and Adhesion assays) were applied to examine the biomarkers' expression and function in primary endometrial stromal cells. Bioinformatic analysis indicated that the core pathogenesis of EMS was dysregulated immune-inflammation and tissue remolding processes. Among the upregulated DEGs, BST2 was screened as a potential diagnostic biomarker in EMS, which associated with the revised American Fertility Society (r-AFS) stage and immune-inflammation processes of EMS. Moreover, BST2's overexpression was affirmed in the RNA and protein levels in EMS tissues. In vitro experiments demonstrated that TNF-α promoted the expression of BST2 in ESCs. And BST2 knockdown inhibited migration, invasion, adhesion, and inflammation except for the proliferation of ESCs, probably via the TNF-α/NF-κB pathway. Through a combination of wet and dry studies, we concluded that the core pathogenesis of endometriosis was dysregulated immune-inflammation and tissue remolding, and BST2 might be a potential diagnostic and therapeutic target in endometriosis.

3.
Zhen Ci Yan Jiu ; 49(2): 135-144, 2024 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38413034

RESUMO

OBJECTIVES: To observe the effect of electroacupuncture (EA) of scalp acupoint (Dingnieqian-xiexian, MS6) on expression of retinoid-related orphan receptor γT (ROR γ t), interleukin (IL)-17A, IL-10, transfor-ming growth factor-ß1 (TGF-ß1), IL-6, IL-21, and IL-17A+ Thelper cells(Th) 17 and forkhead transcription factor P3 (FOXP3)+ regulatory T cells (Treg) differentiation of ischemic cortex in ischemic stroke rats, so as to explore its molecular mechanisms underlying relief of inflammatory injury of ischemic stroke. METHODS: A total of 120 male SD rats were randomly assigned to sham operation, model, EA, inhibitor, agonist and EA+agonist groups, with 15 rats in each group. The ischemic stroke model was established by occlusion of the left middle cerebral artery according to Longa's methods. For rats of the EA group and EA+agonist group, EA (2 Hz/100 Hz, 1 mA) was applied to bilateral MS6 for 30 min, once daily for 7 days. Rats of the inhibitor group received intraperitoneal injection of solution of SR1001 (RORγt inhibitor) (2.5 mg/mL, 10 mg/kg), once daily for 7 days. Rats of the agonist and EA+agonist groups received intraperitoneal injection of solution of SR1078 (RORγt agonist) (5 mg/mL, 5 mg/kg) before EA, once daily for 7 days. Rats of the sham operation and model groups were grabbed and fixed in the same way with the other groups. The Zea-longa's score, modified neurological severity score (mNSS) and the neurobehavioral score were assessed before and after the intervention. At the end of experiments, the ischemic cortex tissue was collected. The 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining was used to detect the volume of cerebral infarction. The expression of RORγt mRNA was detected by real-time quantitative PCR;the protein expression levels of RORγt, IL-17A, IL-10 and TGF-ß1 were detected by Western blot;the immunoactivity of IL-6 and IL-21 were detected by immunohistochemistry;the fluorescence areas of IL-17A+Th17 and FOXP3+Treg cells were measured by immunofluorescence and their ratio was calculated in the tissue of ischemic cortex. RESULTS: Relevant to the sham operation group, the model group had a significant increase in the Zea-Longa's score, mNSS score, neurobehavioral score, cerebral infarct volume, expression levels of RORγt mRNA and protein, IL-17A protein, IL-6 and IL-21 immunoactivity, IL-17A+Th17 immunofluorescence intensity, and the ratio of IL-17A+Th17/FOXP3+Treg (P<0.01), and an obvious decrease in the expression levels of TGF-ß1 and IL-10 proteins and FOXP3+Treg immunofluorescence intensity (P<0.01). In contrast to the model group, both EA and inhibitor groups had a significant decrease in the Zea-Longa's score, mNSS score, neurobehavioral score, cerebral infarct volume, expression levels of RORγt mRNA and protein, IL-17A protein, IL-6 and IL-21 immunoactivity, IL-17A+Th17 immunofluorescence intensity, and the ratio of IL-17A+Th17/FOXP3+Treg (P<0.01, P<0.05), and a marked increase in the expression levels of TGF-ß1 and IL-10 proteins and FOXP3+Treg immunofluorescence intensity (P<0.05, P<0.01), while the above indicators of the agonist group were all reversed (P<0.01, P<0.05). Comparison between the agonist and EA+agonist groups showed that the Zea-Longa's score, mNSS score, neurobehavioral score, cerebral infarct volume, expression levels of RORγt mRNA and protein, IL-17A protein, IL-6 and IL-21 immunoactivity, IL-17A+Th17 immunofluorescence intensity, and the ratio of IL-17A+Th17/FOXP3+Treg were significantly lower (P<0.01, P<0.05), and the expression of TGF-ß1 and IL-10 proteins and FOXP3+Treg immunofluorescence intensity were obviously higher (P<0.01, P<0.05) in the EA+agonist group than in the agonist group, suggesting that EA intervention can effectively weaken the effects of RORγt agonist. CONCLUSIONS: EA of scalp acupoint MS6 can effectively improve the neurological function, behavior reaction and reduce cerebral infarct volume in ischemic stroke rats, which may be associated with its functions in down-regulating the expression of RORγt and promoting the balance of IL-17A+Th17/FOXP3+Treg to alleviate inflammatory injury after ischemic stroke.


Assuntos
Isquemia Encefálica , Eletroacupuntura , AVC Isquêmico , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Interleucina-10 , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Interleucina-17/genética , Interleucina-6 , Pontos de Acupuntura , Couro Cabeludo , Linfócitos T Reguladores , Fator de Crescimento Transformador beta1 , Infarto Cerebral , Fatores de Transcrição Forkhead , RNA Mensageiro
4.
Mol Neurobiol ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38356095

RESUMO

Exosomes, as membranous vesicles generated by multiple cell types and secreted to extracellular space, play a crucial role in a range of brain injury-related brain disorders by transporting diverse proteins, RNA, DNA fragments, and other functional substances. The nervous system's pathogenic mechanisms are complicated, involving pathological processes like as inflammation, apoptosis, oxidative stress, and autophagy, all of which result in blood-brain barrier damage, cognitive impairment, and even loss of normal motor function. Exosomes have been linked to the incidence and progression of brain disorders in recent research. As a result, a thorough knowledge of the interaction between exosomes and brain diseases may lead to the development of more effective therapeutic techniques that may be implemented in the clinic. The potential role of exosomes in brain diseases and the crosstalk between exosomes and other pathogenic processes were discussed in this paper. Simultaneously, we noted the delicate events in which exosomes as a media allow the brain to communicate with other tissues and organs in physiology and disease, and compiled a list of natural compounds that modulate exosomes, in order to further improve our understanding of exosomes and propose new ideas for treating brain disorders.

5.
Biochem Biophys Res Commun ; 692: 149338, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043156

RESUMO

Resveratrol is involved in regulating ferroptosis, but its role in Endometriosis (EMS) is not clear. In this study, we aim to investigate the effect of ferroptosis and resveratrol intervention in the pathogenesis of EMS cyst. Cell proliferation, migration, and oxidative stress level were analyzed. The interaction of miR-21-3p and p53 was analyzed by dual luciferase assay. The interaction between p53 and SLC7A11 were analyzed by chromatin immunoprecipitation (CHIP). The miR-21-3p, GPX4, ACSL4, FTH1, p53, SLC7A11, Ptgs2 and Chac1 expression were analyzed by RT-qPCR or Western blot. The Fe3+ deposition and miR-21-3p, GPX4, FTH1 and SLC7A11 expressions were increased, and ACSL4, p53, Ptgs2 and Chac1 expression were decreased in EMS patients. Resveratrol inhibited migration, induced Ptgs2 and Chac1 expression in EESCs. Overexpression of miR-21-3p inhibited p53, Ptgs2 and Chac1 expression, and promoted SLC7A11 expression, which was reversed by resveratrol. miR-21-3p bound to p53, which interacted with SLC7A11. Resveratrol promoted Ptgs2 and Chac1 expression in the sh-p53 EESCs. Resveratrol reduced miR-21-3p and SLC7A11 expressions, and increased p53, Ptgs2 and Chac1 expressions, and Fe3+ deposition in the lesion tissues of EMS mice, which were reversed by miR-21-3p mimics. Resveratrol activated p53/SLC7A11 pathway by down-regulating miR-21-3p to promote ferroptosis and prevent the development of EMS.


Assuntos
Endometriose , Ferroptose , MicroRNAs , Feminino , Humanos , Animais , Camundongos , Ciclo-Oxigenase 2/genética , Endometriose/genética , Resveratrol/farmacologia , Proteína Supressora de Tumor p53/genética , Transdução de Sinais , MicroRNAs/genética , Sistema y+ de Transporte de Aminoácidos/genética
6.
Neonatal Netw ; 42(5): 276-283, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657808

RESUMO

Background: Orogastric (OG) and nasogastric (NG) tubes are frequently used in the NICU. Obtaining a relatively accurate estimated length before insertion could significantly reduce complications. While previous studies have mainly focused on the NG tube, OG tubes are more commonly used in China. Purpose: The objective was to determine whether there were differences in the rate of accurate placement among the adapted nose-ear-xiphoid (NEX) method, nose-ear-midway to the umbilicus (NEMU) method, and weight-based (WB) equation in estimating the OG tube insertion distance. Methods: A randomized, controlled, open-label clinical trial to compare the three methods was conducted in a single center. After enrollment, newborns were randomly assigned into three groups. By radiological assessment, the anatomical region for OG tube placement was analyzed. The primary metric was the tip within the gastric body, and the second metric was strictly accurate placement defined as the tube was not looped back within the stomach and the end was located more than 2 cm but less than 5 cm into the stomach, referred to as T10. Results: This study recruited 156 newborns with the majority being preterm infants (n = 96; 61.5 percent), with an average birth weight of 2,200.8 ± 757.8 g. For the WB equation, 96.2 percent (50 cases) of the OG tubes were placed within the stomach, and the rates were 78.8 percent (41 cases) in the adapted NEX and NEMU methods. The strictly accurate placement rates were highest for the WB equation at 80.8 percent (42/52), followed by the adapted NEX method at 65.4 percent (34/52), and the NEMU method at 57.7 percent (30/52). Conclusion: The WB equation for estimating the insertion depth of the OG tube in newborn infants resulted in more precise placement compared to the adapted NEX and NEMU methods.

7.
Cancer Rep (Hoboken) ; 6(10): e1858, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37605299

RESUMO

BACKGROUND: Ovarian cancer seriously threatens women's health because of its poor prognosis and high mortality. Due to the lack of efficient early detection and screening methods, when patients seek doctors' help with complaints of abdominal distension, back pain and other nonspecific signs, the clinical results always hint at the widespread metastasis of disease. When referring to the metastasis of this disease, the omentum always takes precedence. RECENT FINDINGS: The distinguishing feature of the omentum is adipose tissue, which satisfies the energy demand of cancer cells and supplies a more aggressive environment for ovarian cancer cells. In this review, we mainly focus on three important cell types: adipocytes, macrophages, and mesenchymal stem cells. Besides, several mechanisms underlying cancer-associated adipocytes (CAA)-facilitated ovarian cancer cell development have been revealed, including their capacities for storing lipids and endocrine function, and the release of hormones, growth factors, and adipokines. Blocking the reciprocity among cancer cells and various cells located on the omentum might contribute to ovarian cancer therapy. The inhibition of hormones, growth factors and adipokines produced by adipocytes will be a novel therapeutic strategy. However, a sufficient number of trials has not been performed. In spite of this, the therapeutic potential of metformin and the roles of exercise in ovarian cancer will be worth mentioning. CONCLUSION: It is almost impossible to overcome completely ovarian cancer at the moment. What we can do is trying our best to improve these patients' prognoses. In this process, adipocytes may bring promising future for the therapy of ovarian cancer.


Assuntos
Omento , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/patologia , Microambiente Celular , Adipocinas/metabolismo , Hormônios/metabolismo , Microambiente Tumoral
8.
Kaohsiung J Med Sci ; 39(9): 916-926, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37338034

RESUMO

The blood-retinal barrier (BRB), homeostasis, neuronal integrity, and metabolic processes are all directly influenced by Müller cells, the most important retinal glial cells. We isolated primary Müller cells from Sprague-Dawley (SD) neonatal rats and treated them with glucose at varying doses. CCK-8 was used to quantify cellular viability, and a TUNEL assay was performed to detect cell apoptosis. ELISA, immunofluorescence, and western blotting were used to assess cAMP/PKA/CREB signaling, Kir4.1, AQP4, GFAP, and VEGF levels, respectively. H&E staining was used to examine histopathological alterations in diabetic retinopathy (DR)-affected retinal tissue in rats. As glucose concentration increases, gliosis of Müller cells became apparent, as evidenced by a decline in cell activity, an increase in apoptosis, downregulation of Kir4.1 level, and overexpression of GFAP, AQP4, and VEGF. Treatments with low, intermediate, and high glucose levels led to aberrant activation of cAMP/PKA/CREB signaling. Interestingly, blocking cAMP and PKA reduced high glucose-induced Müller cell damage and gliosis by a significant amount. Further in vivo results suggested that cAMP or PKA inhibition significantly improved edema, bleeding, and retinal disorders. Our findings showed that high glucose exacerbated Müller cell damage and gliosis via a mechanism involving cAMP/PKA/CREB signaling.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Ratos , Animais , Retinopatia Diabética/genética , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/genética , Gliose , Glucose/farmacologia
9.
Life Sci ; 320: 121576, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933827

RESUMO

AIMS: One of the main factors hampering the long-term prognosis of colorectal cancer (CRC) patients is distant metastasis. However, the driving factors of CRC metastasis have not been clarified at the single-cell level, which limits the in-depth study of accurate prediction and prevention of CRC metastasis to improve the prognosis. MATERIALS AND METHODS: Heterogeneities in the tumor microenvironment (TME) between metastatic and nonmetastatic CRC were investigated by single-cell RNA (scRNA) sequencing data. In detail, 50,462 single cells from 20 primary CRC samples, including 40,910 cells from nonmetastatic CRC (M0 group) and 9552 cells from metastatic CRC (M1 group), were systematically analyzed in this study. KEY FINDINGS: Based on the single-cell atlas, we revealed that cancer cells and fibroblasts accounted for relatively high proportions in metastatic CRC compared with nonmetastatic CRC. Moreover, two specific cancer cell subtypes (FGGY+SLC6A6+ and IGFBP3+KLK7+ cancer cells) and three specific fibroblast subtypes (ADAMTS6+CAPG+, PIM1+SGK1+ and CA9+UPP1+ fibroblasts) in metastatic CRC were identified. The functional and differentiation characteristics of these specific cell subclusters were elucidated by enrichment and trajectory analyses. SIGNIFICANCE: These results provide fundamental knowledge for future in-depth research to screen effective methods and drugs to predict and prevent CRC metastasis to improve prognosis.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Microambiente Tumoral/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Análise de Sequência de RNA
10.
Reprod Sci ; 30(9): 2665-2679, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36917423

RESUMO

Endometriosis (EMs) is a systemic and chronic disease with cancer-like feature, namely, distant implantation, which caused heavy healthy burden of nearly 200 million females. LncRNAs have been proved as new modulators in epithelial-mesenchymal transition (EMT) and EMs. Quantitative real-time PCR was conducted to measure the expression level of long intergenic non-protein coding RNA, regulator of reprogramming (Linc-ROR), and miR-204-5p in ectopic endometrium (n = 25), eutopic endometrium (n = 20), and natural control endometrium (n = 22). Overexpression of Linc-ROR, knockdown or overexpression of miR-204-5p in End1/E6E7 and Ishikawa cells, was conducted to detect the function of Linc-ROR and miR-204-5p in EMs. Furthermore, luciferase reports were used to confirm the combination of Linc-ROR and miR-204-5p and the combination between miR-204-5p and SMAD4. Cell-Counting Kit-8, EdU assay, transwell assays, and Western blotting were used to detect the function of Linc-ROR and miR-204-5p in EMs cancer-like behaviors and EMT process. Linc-ROR was up-regulated in ectopic endometrium. Overexpressed Linc-ROR promotes cell proliferation, invasion, and EMT process. Linc-ROR regulated the EMT process, cellular proliferation, and invasion of EMs via binding to miR-204-5p. In addition, overexpression of Linc-ROR up-regulated SMAD4, a target protein of miR-204-5p, with which regulated EMT process and cancer-like behaviors in EMs together. Linc-ROR/miR-204-5p/SMAD4 axis plays a vital role in regulation EMT process in EMs, which might become a novel therapeutic targets and powerful biomarkers in EMs therapy.


Assuntos
Endometriose , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Transição Epitelial-Mesenquimal/genética , Endometriose/metabolismo , Biomarcadores , Proliferação de Células/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Proteína Smad4/metabolismo
11.
J Ovarian Res ; 16(1): 62, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36978087

RESUMO

BACKGROUND: Ovarian cancer (OC) is one of the most life-threatening cancers affecting women worldwide. Recent studies have shown that the DNA methylation state can be used in the diagnosis, treatment and prognosis prediction of diseases. Meanwhile, it has been reported that the DNA methylation state can affect the function of immune cells. However, whether DNA methylation-related genes can be used for prognosis and immune response prediction in OC remains unclear. METHODS: In this study, DNA methylation-related genes in OC were identified by an integrated analysis of DNA methylation and transcriptome data. Prognostic values of the DNA methylation-related genes were investigated through least absolute shrinkage and selection operator (LASSO) and Cox progression analyses. Immune characteristics were investigated by CIBERSORT, correlation analysis and weighted gene co-expression network analysis (WGCNA). RESULTS: Twelve prognostic genes (CA2, CD3G, HABP2, KCTD14, PI3, SERPINB5, SLAMF7, SLC9A2, STC2, TBP, TREML2 and TRIM27) were identified and a risk score signature and a nomogram based on prognostic genes and clinicopathological features were constructed for the survival prediction of OC patients in the training and two validation cohorts. Subsequently, the differences in the immune landscape between the high- and low-risk score groups were systematically investigated. CONCLUSIONS: Taken together, our study explored a novel efficient risk score signature and a nomogram for the survival prediction of OC patients. In addition, the differences of the immune characteristics between the two risk groups were clarified preliminarily, which will guide the further exploration of synergistic targets to improve the efficacy of immunotherapy in OC patients.


Assuntos
Metilação de DNA , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Nomogramas , Perfilação da Expressão Gênica , Imunoterapia , Prognóstico , Receptores Imunológicos
12.
Neuromodulation ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36604241

RESUMO

OBJECTIVES: γ-amino butyric acid (GABA)-ergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease (AD). Inhibitory interneurons play an important role in the regulation of E/I balance, synaptic transmission, and network oscillation through manipulation of GABAergic functions, showing positive outcomes in AD animal models. Mice expressing 5 familial AD mutation (5xFAD) exhibited a series of AD-like pathology and learning and memory deficits with age. Because electroacupuncture (EA) treatment has been used for a complementary alternative medicine therapy in patients with AD, we aimed to examine any usefulness of EA therapy in GABA interneuron function and its associated synaptic proteins, to determine whether EA could effectively improve inhibitory transmission and network oscillation and eventually alleviate cognitive impairments in 5xFAD mice, and to further elucidate the GABAergic system function underlying the antidementia response of EA. MATERIALS AND METHODS: 5xFAD mice were used to evaluate the potential neuroprotective effect of electroacupuncture at Baihui (DU 20) and Dazhui (DU 14) through behavioral testing, immunofluorescence staining, electrophysiology recording, and molecular biology analysis. RESULTS: First, we observed that EA improved memory deficits and inhibitory synaptic protein expression. Second, EA treatment alleviated the decrease of somatostatin-positive interneurons in the dorsal hippocampus. Third, EA attenuated E/I imbalance in 5xFAD mice. Last, EA treatment enhanced theta and gamma oscillation in the hippocampus of 5xFAD mice. CONCLUSIONS: EA stimulation at DU20 and DU14 acupoints may be a potential alternative therapy to ameliorate cognitive deficits in AD through the regulation of the function of the GABAergic interneuron.

13.
Hum Exp Toxicol ; 41: 9603271221138969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36445031

RESUMO

Long noncoding RNAs (lncRNAs) are abnormally expressed in numerous diseases, and they are closely associated with cardiac diseases. However, the role of lncRNAs in lipopolysaccharide (LPS)-induced cardiotoxicity as well as the potential mechanism remain largely unclear. In the present study, IncRNA microarray assays were performed to analyze differential lncRNA expression in LPS-treated cardiomyocytes, and lncRNA FGD5-AS1 was one of the downregulated lncRNAs. H9C2 cells were treated with LPS, and the expression of lncRNA FGD5-AS1 was markedly downregulated. LncRNA FGD5 overexpression decreased the LPS-induced cardiomyocyte apoptosis and inflammation. Bioinformatics analysis and a luciferase reporter assay indicated that lncRNA FGD5-AS1 directly binds to miR-223-3p. A miR-222-3p mimic partially reversed the inhibitory effect of lncRNA FGD5-AS1 on the LPS-induced H9C2 cell apoptosis and inflammatory response. Moreover, miR-223-3p directly targeted growth arrest-specific transcript 5 (GAS5). LncRNA FGD5-AS1 regulated LPS-induced H9C2 cell inflammation and apoptosis via the miR-223-3p/GAS5 axis.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Miócitos Cardíacos , Lipopolissacarídeos/toxicidade , Inflamação/induzido quimicamente , Inflamação/genética , MicroRNAs/genética , Fatores de Troca do Nucleotídeo Guanina/genética
14.
Transl Cancer Res ; 11(9): 3187-3208, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36237259

RESUMO

Background: The TYMP gene encodes an important nucleoside metabolism enzyme which is a rate-limiting enzyme for chemotherapeutic drug metabolism. Previous studies have shown that TYMP is highly expressed in many different tumors, promoting invasiveness and progression, and that it helps to predict the response to chemotherapeutic drugs. However, the role of TYMP in tumor immunity and prognosis remains largely unclear. The purpose of this pan-cancer analysis was to acquire more data on the function of TYMP function and its clinical significance. Methods: To access the TYMP expression, we accessed datasets from The Cancer Genome Atlas (TCGA), Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Cancer Cell Line Encyclopedia (CCLE) databases, and analyzed its differential expression between paired tumor and normal samples. We employed PrognoScan and Kaplan-Meier plotter for survival analyses. TYMP mutations were analyzed using cBioPortal. Correlations of TYMP with tumor stage, tumor mutational burden (TMB), microsatellite instability (MSI), immune checkpoint genes (ICGs), and immune cell infiltration were estimated via bioinformatics tools and methods. The CellMiner database was used to predict drug response. Gene set enrichment analysis (GSEA) was applied to explore the biological functions of TYMP in different tumors. Results: Our results indicated that TYMP was overexpressed and also significantly associated with a worse prognosis in several human cancers, such as kidney clear cell carcinoma (KIRC) and lower grade glioma (LGG). TYMP was also associated with TMB, MSI, and ICGs across a variety of malignancies. TYMP was most significantly correlated with immune cell infiltration in five tumors, namely, breast cancer (BRCA), cervical cancer (CESC), KIRC, skin cutaneous melanoma (SKCM), and stomach adenocarcinoma (STAD). Moreover, TYMP expression predicted sensitivity to chemotherapy drugs and also influenced relevant biological pathways, according to enrichment analysis. Conclusions: According to the results of this comprehensive analysis, TYMP is associated with prognosis and tumor immunology, which might make it be a potential therapeutic target for cancer treatment.

15.
Front Surg ; 9: 963850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090322

RESUMO

Background: Congenital heart disease (CHD) is the most common type of birth defect. Most patients with CHD require surgery, and cardiopulmonary bypass (CPB) is the most common surgery performed. Methods: The present study utilized weighted gene co-expression network analysis (WGCNA) to identify key inflammation genes after CPB for CHD. The GSE132176 dataset was downloaded from the Gene Expression Omnibus(GEO) database for WGCNA to identify the modules closely related to clinical traits. Disease enrichment, functional annotation and pathway enrichment were performed on genes in the module closely related to clinical traits using Enrichr and Metascape. Immune infiltration analysis was also performed on the training dataset using CIBERSORT. Finally, we identified hub genes using high gene significance (GS), high module members (MMs) and Cytoscape, and we verified the hub genes using an independent dataset and Western blot analysis. Results: WGCNA showed that the brown module with 461 genes had the highest correlation to CHD after CPB. Functional annotation and pathway enrichment analysis were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, which showed that genes in the brown module were enriched in inflammation-related pathways. In the disease enrichment analysis, genes in the brown module were enriched for inflammatory diseases. After the 30 most highly associated brown intramodular genes were screened, a protein-protein interaction network was constructed using the STRING online analysis website. The protein-protein interaction results were then calculated using 12 algorithms in the cytoHubba plugin of Cytoscape software. The final result showed that CDKN1A was the fundamental gene of post-CPB for CHD. Using another independent validation dataset (GSE12486), we confirmed that CDKN1A was significantly differentially expressed between preoperative and postoperative CPB (Wilcoxon, P = 0.0079; T-test, P = 0.006). In addition, CDKN1A expression was elevated in eosinophils, neutrophils, memory CD4 T cells and activated mast cells. Western blot analysis showed that the expression of CDKN1A protein was significantly higher postoperative CPB than preoperative CPB. Moreover, CDKN1A was mainly related to inflammation. Conclusion: In summary, we found a relationship between CDKN1A and inflammation after CPB for congenital heart disease by WGCNA, experiments and various bioinformatics methods. Thus, CDKN1A maybe serve as a biomarker or therapeutic target for accurate diagnosis and treatment of inflammation after CPB in the future.

16.
Physiol Int ; 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36057104

RESUMO

Background: Myocardial infarction is the primary cause of high disability and mortality in patients with cardiovascular disease worldwide. The pathological process of myocardial ischemia/reperfusion (I/R) may trigger harmful inflammatory response and ultimately lead to serious cardiac dysfunction. The mechanism of myocardial repair post myocardial infarction has not been fully elucidated. The present study speculated that VSIG4 is related to the regulation of heart injury. Methods: The myocardial I/R injury model was established in Sprague-Dawley (SD) rats. Before I/R operation, the viral solution containing AAV-NC or AAV-VSIG4 was intravenously injected into rats. Cardiac function indicators, mRNA expression, the apoptosis ratio of cardiomyocytes, myocardial infarct area, phenotype polarization of macrophage, and the protein expression of apoptosis or macrophage phenotype were measured. Results: Myocardial I/R injury decreased the expression of VSIG4 and subsequently triggered myocardial apoptosis. The induction of AAV-VSIG4 produced a protective effect on general cardiac function and attenuated the I/R-induced cellular apoptosis in rats. Moreover, VSIG4 signaling might potentially modulate macrophage M1/M2-related inflammatory disorders via activation of PI3K/AKT and inhibition of TLR4/NF-κB expression. Conclusion: In summary, the present study provided evidence that VSIG4 had cardiac protective role in myocardial I/R injury. More importantly, enhanced VSIG4 expression inhibited M1 polarization of macrophages by blocking TLR4/NF-κB activation, subsequently suppressing cardiomyocyte apoptosis. This finding provides vital insights into the role of VSIG4 in I/R injury and may provide a new target for I/R therapy.

17.
Sci Rep ; 12(1): 13296, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918500

RESUMO

Ovarian cancer (OC) is one the most life-threatening cancers affecting women's health worldwide. Immunotherapy has become a promising treatment for a variety of cancers, but the therapeutic effects in OC remain limited. In this study, we constructed a macrophage risk score (MRS) based on M1 and M2 macrophages and a gene risk score (GRS) based on the prognostic genes associated with MRS. Next, cell-cell communication analysis was performed using single-cell RNA (scRNA) sequencing data. Survival status and immune characteristics were compared between the high- and low-score groups separated by MRS or GRS. Our results suggested that MRS and GRS can identify the immune subtypes of OC patients with better overall survival (OS) and inflammatory immune microenvironment. Moreover, M1 and M2 macrophages may affect the prognosis of OC patients through signal communication with CD8 T cells. Finally, functional differences between the two groups separated by GRS were elucidated. Taken together, this study constructed two useful models for the identification of immune subtypes in OC, which has a better prognosis and may have a sensitive response to immune checkpoint inhibitors (ICIs). The hub genes for the construction of GRS may be potential synergetic targets for immunotherapy in OC patients.


Assuntos
Neoplasias Ovarianas , Transcriptoma , Biomarcadores Tumorais/genética , Carcinoma Epitelial do Ovário/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/terapia , Prognóstico , Microambiente Tumoral/genética
18.
Open Life Sci ; 17(1): 473-482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647298

RESUMO

NKX2.5 is a transcription factor that plays a key role in cardiovascular growth and development. Several independent studies have been previously conducted to investigate the association between the single-nucleotide polymorphism (SNP) 606G >C (rs3729753) in the coding region of NKX2.5 and congenital heart disease (CHD). However, the results of these studies have been inconsistent. Therefore, the present study aimed to reveal the relationship between NKX2.5 SNP 606G >C and the risk of CHD as possible in the Chinese population through meta-analysis. After retrieving related articles in PubMed, MEDLINE, EMBASE, Web of science, Cochrane, China National Knowledge Infrastructure, Wanfang DATA, and VIP database until August 2021, a total of eight studies were included in the present meta-analysis. The qualified research data were then merged into allele, dominant, recessive, heterozygous, homozygous, and additive models. Overall results of the current meta-analysis showed that 606G >C was not associated with CHD of the Chinese population in any model. In addition, subgroup analysis based on CHD type gave the same negative result. Results of sensitivity analysis showed that there was no significant correlation after the deletion of each study. Furthermore, it was noted that the results were negative and the heterogeneity was not significant. In conclusion, it was evident that NKX2-5 SNP 606G >C may not lead to the risk of CHD in Chinese population.

19.
Reprod Biol Endocrinol ; 20(1): 77, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513844

RESUMO

BACKGROUND: Endometriosis (EMS) remains a major challenge to reproductive health due to multifactorial etiology, disease heterogeneity, and the lack of appropriate diagnostic markers and treatment. Eexosome (Exo) has become a major factor in progression of a variety of diseases. However, the mechanisms directing their role in the pathophysiology of EMS are ill-defined. Here, we aimed to investigate the clinical implications of actin filament associated protein 1-Antisense RNA 1 (AFAP1-AS1) in EMS. METHODS: Bioinformatics analysis was used to predict the expression and interaction of AFAP1-AS1, miR-15a-5p and BCL9 in EMS, and dual luciferase reporter assay was used to verify the targeted relationship of AFAP1-AS1, miR-15a-5p, and BCL9. The Exo from endometrial stromal cells (ESCs) was isolated and characterized by transmission electron microscopy (TEM) and Nanoparticle tracking analysis (NTA). Exosome uptake studies were performed. For in vitro assay, ectopic ESCs (EcESCs) proliferation, migration, and invasion were assessed by CCK-8 and Transwell assays. In vivo assay was performed by establishment of EMS mice to validate the result derived from in vitro assay. RESULTS: The Exo was successfully isolated from ESCs and we observed high expression of AFAP1-AS1 and BCL9 but low expression of miR-15a-5p in EMS. Moreover, Exo derived from EcESCs could deliver AFAP1-AS1 to EcESCs and thus promoting proliferation, migration, and invasion of ESCs. AFAP1-AS1 bound to BCL9, which was targeted by miR-15a-5p in EMS. In vivo experiments in nude mice revealed that inhibition of Exosomal AFAP1-AS1 suppressed migration and invasion of EcESCs through miR-15a-5p/BCL9. CONCLUSIONS: Collectively, these findings suggested that ESCs-derived Exo carrying AFAP1-AS1 contributed to EMS pathogenesis. This study might help us realize the etiology of EMS and improve the treatment of the related complications.


Assuntos
Endometriose , MicroRNAs , RNA Longo não Codificante , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Endometriose/genética , Endometriose/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Células Estromais/metabolismo , Fatores de Transcrição
20.
Front Med (Lausanne) ; 9: 815450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35510248

RESUMO

Globally, cervical cancer (CC) is the most common malignant tumor of the female reproductive system and its incidence is only second after breast cancer. Although screening and advanced treatment strategies have improved the rates of survival, some patients with CC still die due to metastasis and drug resistance. It is considered that cancer is driven by somatic mutations, such as single nucleotide, small insertions/deletions, copy number, and structural variations, as well as epigenetic changes. Previous studies have shown that cervical intraepithelial neoplasia is associated with copy number variants (CNVs) and/or mutations in cancer-related genes. Further, CC is also related to genetic mutations. The present study analyzed the data on somatic mutations of cervical squamous cell carcinoma (CESC) in the Cancer Genome Atlas database. It was evident that the Apolipoprotein B mRNA editing enzyme-catalyzed polypeptide-like (APOBEC)-related mutation of the FLG gene can upregulate the expression of the JUN gene and ultimately lead to poor prognosis for patients with CC. Therefore, the findings of the current study provide a new direction for future treatment of CC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...